
Network Measurement over Cloud with perfSONAR

Li-Chi Ku1 Hui-Lan Lee2
1 2National Center for High-performance Computing

1lku@narlabs.org.tw 2gracelee@narlabs.org.tw

Abstract
The quality of the cloud computing,

especially those built upon inter-cloud and hybrid
cloud mechanisms, relies heavily on the network
quality. While network measurement tools can
greatly ease the burden of maintaining network
quality, the widely deployed NAT environment on
most clouds hinders these tools from functioning
properly. A double NAT technique has been
developed and explained in this paper to make the
NAT incompatible perfSONAR to work as fine as it
is in on-premises networks.
Keywords: Double NAT, perfSONAR, Network
measurement.

Introduction
The flourish of cloud computing has greatly

reshaped the main usage of the Internet from its
original peer to peer form into the nowaday client to
datacenter form. The network quality between the
user and the datacenters, in particular the network
latency and packet loss rate, dictates the perceived
quality of the cloud services. The development of
inter-cloud and hybrid cloud services further elevates
the importance of the network quality due to the
involvement of more network segments behind the
scene before the overall service can be delivered.

In current TCP/IP network architecture, the
traffic is packed into packets before sending to the
destination. Therefore a good network quality usually
refers to the timely arrival of the packets at the
destination, in the exact order and consistent interval
as they are sent, without any packet loss. Depending
on the type of the network application, the
aforementioned characteristics of the network
quality, namely network latency, packet order, jitter
and packet loss rate may have different importance.
But the latency and packet loss rate usually have the
highest impact on the perceived cloud service quality.

However, the detection of network quality
losses is not as straightforward as it might seem. The
seven layers architecture[1] of TCP/IP network,
designed from the beginning of the technology, was
aimed at hiding the complexity of network
transmission in modular layers thus the difficulty of
designing network hardware and software became
much easier. This design was so successful, leading
to the huge growth of the Internet. However, it also
hides the information regarding error under those
layers, which makes network problems harder to
detect.

Measurement tools are designed to obtain

the network status to mitigate the aforementioned
problem. Among different types of measurement,
active network measurement[2] is the most common
way to detect the end to end network quality. By
actively sending packets to the destination, collecting
the return packets and calculating the statistics from
them, the characteristics of the network in between
can be revealed without relying on the hidden
information from the underlying network layers. This
method requires the collaboration of both sides of the
network, however.

Taking the most commonly used tools
“ping” and “traceroute” as an example, they require
the destination to send back “ICMP echo reply” or
“ICMP port unreachable”, respectively, in response
to the sender side initiated measurement probes.
These kinds of ICMP replies have been supported by
all modern OSes and are taken care of by OS kernels.
Thus extra software installation is not necessary in
order to perform these kinds of measurements.
However, if more complicated measurements, such
as “one way ping” or bandwidth tests are demanded,
since they are not supported by OSes, measurement
software needs to be installed on both sides with
matching settings configured.

Due to the aforementioned restriction, for
measuring network quality to unspecific targets, our
options are usually limited to basic measurements
such as the ping and traceroute. In case more insight
about the network is required, in order to have
matching measurement software installed, both sides
of the measurement often need to be in our control or
under certain measurement collaboration.

The Challenge of The Cloud
Cloud computing imposes an additional

challenge to network measurement because most
cloud service providers adopt network address
translation (NAT)[3] technology in their network
environment, including Amazon AWS[4], Microsoft
Azure[5] and Google Cloud[6]. With the NAT in
place, the virtual machine (VM) gets a private IP
address, such as 192.168.1.1, which is different from
the out-facing public IP address when it talks with
other machines on the Internet. Problem arises when
this VM tells other measurement points its address
and asks them to do measurement with it. Since the
IP address that the VM knows is a private IP address,
which is not an reachable IP address for other
measurement points, the measurement is not going to
be successfully made. Even if the out-facing public
IP address is manually given to other measurement
points instead, when they try to express their

mailto:1lku@narlabs.org.tw


intention of doing measurement with this VM, this
VM only gets confused because the target they want
to do measurement with (the out-facing public IP
address) is obviously not the IP that it knows it
posses. This problem becomes more apparent in peer
to peer and scheduling based measurement solutions.
While several network measurement tools are
available in the market, many of them require public
IP on both sides of measurement, or at least on the
server side, if it's in client-server design. This
requirement severely limits their usability in the
cloud related network measurements.

perfSONAR
International research and education

networks prefer open source network measurement
tools for the following reasons:

● International research projects often involve
multiple research institutions and
universities across multiple countries and
even continents. For the network
measurement to be able to be made, every
participating institution needs to have the
same measurement tools. The openness and
low-cost of open source tools make it easier
to be widely adopted.

● To accommodate the quickly evolving new
network technology and the different needs
from the diversity of participating
institutions, open source tools are much
easier to modify accordingly and distribute
the modified version to all other
participants.
A group of experts from several research

and education networks including Internet2[7],
ESnet[8], GEANT[9], Indiana University[10],
RNP[11] and University of Michigan[12] would like
to address the common needs of cross domain
network measurement and have eventually developed
perfSONAR[13]. perfSONAR is a 100% open source
github project under Apache License 2.0. It provides
a nice web user interface, a scheduling mechanism to
coordinate various measurement tests and an
OpenSearch database to store the results. The tests it
supports are quite abundant, as listed in table 1.

Table 1 perfSONAR supported test[14]

Test Tool Target

clock psclock Measure the clock
difference between
hosts

disk to
disk

curl, globus End to end, disk to disk
data transfer rate

dns dnspy DNS transaction time

http psurl HTTP response time

latency owping One way network
latency and packet loss
rate

latencybg powstream Continuous one way
latency and packet loss
rate measurement

rtt ping Round-trip latency and
packet loss rate

simplestr
eam

simplestrea
mer

TCP connection test

throughp
ut

iperf3,
iperf2,
nuttcp

Available bandwidth
(network throughput)

s3through
put

s3-benchma
rk

S3 storage service
transferring rate

trace traceroute,
tracepath,
paris-tracer
oute

Network route tracing

Figure 1 The perfSONAR component
architecture

perfSONAR contains several roles[15],
which are functionally independent, as follows. The
architecture of the underlying components is shown
in figure 1.

● Testpoint: a collection of test tools and a
scheduling agent. The Testpoint can be
installed independently and being
coordinated by a central test plan publisher
to do measurement with other Testpoints
and then write the result remotely to an
archive..

● Archive: an OpenSearch and Logstash
backed database dedicated for storing
measurement results.

● Toolkit: a combination of the
aforementioned two, plus a web user
interface. Thus it can do the measurement ,
store the result locally and provide a nice



visualization over the data, as shown in
figure 2.

Figure 2 Packet loss rate and latency chart

The NAT Problem
Just like many other measurement tools,

perfSONAR is a scheduling based system, which
means there is only a scheduler running in the
background and listening to port 443. Only when a
test is requested from an internal schedule or from
another testpoint through the https connection, the
respective measurement tool is then launched.

If a test request is received but it is not
targeted at the IP which the scheduler thinks itself to
be, the request will simply be ignored. This is exactly
what happens when perfSONAR is installed in a
NAT environment, because the out-facing IP
everybody else is seeing, is different from the IP
which perfSONAR sees itself to be, as shown in the
figure 3.

Figure 3 IP mismatch in the NAT environment

In such an environment, the VM gets
assigned a private IP, such as the 192.168.211.17 in
this example. When traffic goes to or comes from the

Internet, it passes a device which translates the
private IP into a public one or vice versa. This kind
of device is called network nodes in OpenStack, or
edge in VMware NSX-T. In this way, however, the IP
seen from the inside and from the outside must be
different. Because of the aforementioned scheduling
mechanism, perfSONAR requires that the IP seen
from each testpoints, including the testpoint itself,
must be the same. Therefore the perfSONAR
installed in most cloud environments does not work
at all.

The Double NAT Solution
Since the NAT provided by the cloud

service provider is inevitable and the measurement
software requires the inner and outer IP to be the
same, the workaround is to deploy a second NAT to
translate the inner private IP back to the outer public
IP. Thus the inner perfSONAR possesses the same IP
as what other testpoints may see.

Figure 4 Iptables flow chart

This is possible because perfSONAR
officially releases a docker container version of its
testpoint. When docker containers are created in
“bridge” network mode, they naturally come with a
layer of NAT between the container and the host. We
can then take advantage of this mechanism and create
our perfSONAR container inside of the VM we
obtain from the cloud service provider. The NAT
introduced by docker between the VM and the
perfSONAR container is then served as the second
NAT we need to convert the private IP back to the
outside public IP. In order to do that, we need to add
rules to the following three iptables chains:
PREROUTING, FORWARD and POSTROUTING,
as shown in the yellow boxes in the figure 4.



In this example, the out-facing IP of the
cloud VM is 203.145.220.104. The NAT mechanism
in the network nodes modifies the destination IP of
the inbound packets to 192.168.211.17, which is the
private IP of our cloud VM, as shown in figure 5.

Figure 5 The second NAT in the VM

The DNAT rules we created in the
PREROUTING chain translate the destination IP of
the incoming packets to 203.145.220.104, which is
exactly the out-facing public IP that others see. This
works because a bridge br0 is created with
203.145.220.254, the gateway IP of this public IP
subnet, which turns the 203.145.220.0/24 as a local
attached subnet. Since it’s a local subnet, the
incoming packets are forwarded to br0, and
eventually reach the inner perfSONAR container,
which is also on br0 and has exactly the destination
IP the packets are destined to go to.

When the perfSONAR container sends
packets outward, those packets go to the br0 first
because br0 has the gateway IP. On their way being
forwarded, the masquerade SNAT rules automatically
coming with the docker translate the source IP to
192.168.211.17. Thus when those packets leave the
VM, they already look like regular packets that the
VM generates. When they reach the network node,
the NAT of the cloud service translates their source
IP to 203.145.220.104, the out-facing IP, which is
also the IP our perfSONAR thinks it has. With this
double NAT setup, the IP gets translated back to what
it is supposed to be, and the perfSONAR behaves
exactly like it has that public IP in the first place.

The double NAT design won’t cause IP
duplication problems because the “fake public IP”
given to the inner perfSONAR container is
completely shielded inside the VM. Any traffic
between the VM and the outside world behaves
exactly like they are from the private IP of the VM.
The only problem of the double NAT, if at all, is that
since 203.145.220.0/24 becomes a local attached
subnet in the perspective of the VM, any inner traffic

targeting the real 203.145.220.0/24 of the outside
world will only be forwarded to br0, staying in the
VM “inner world” and never reach the real world
targets. The real world 203.145.220.0/24 subnet is
possessed by that same cloud provider and very
likely assigned to other VMs of this cloud. This is
unlikely to be of any problem to measurement use
because other measurement testpoints, usually widely
spread on other networks, are seldom on the same
subnet.

The docker command to create the container
inside the VM is as follows.

● docker network create -d bridge
--subnet=203.145.220.0/24
--gateway=203.145.220.254 br0

● docker run -d --net=br0 --ip
203.145.220.104 -h hostname --name
hostname perfsonar/testpoint
When the container is created, docker

automatically sets up masquerade rules in iptables to
allow the container outbound traffic and related
return traffic to pass. Therefore only the inbound
rules need to be added to allow the measurement
container to receive connections from other
testpoints. The ports used in perfSONAR supported
tools are shown in table 2.

Table 2 perfSONAR tests and their ports[16]

Tool Port

owamp (control) 861

owamp (test) 8760-9960/UDP

twamp (control) 862

twamp (test) 18760-19960/UDP

pscheduler 443

traceroute 33434-33634/UDP

simplestream 5890-5900

nuttcp 5000, 5101

iperf3 5201

iperf2 5001

ntp 123/UDP

ping ICMP

In our current setup, the tools in use are:
● owamp (twamp follows automatically)
● iperf3
● ping
● traceroute



Thus the ports that need to be forwarded to
the container are 443,861-862, 5201,
8760-9960/UDP and 18760-19960/UDP. The reasons
that the port requirements for ping and traceroute are
not included are that the traceroute
33434-33634/UDP belongs to the ephemeral port
range, which is likely to be used by the applications
in the VM. The VM also needs ICMP to perform
various functions. Forwarding all of them to the
container causes unexpected problems in the VM.
Besides, the OS kernel of the VM can already take
care of them, forwarding them further to the
container is not necessary. Thus the ports being
forwarded are simplified as:

● TCP: 443,861-862, 5201
● UDP: 8760-19960

and the final commands to add those rules are:
(sudo)
iptables -t nat -A PREROUTING -i ens3 -p tcp -m
multiport --dports 443,861,862,5201 -j DNAT
--to-destination 203.145.220.104
iptables -t nat -A PREROUTING -i ens3 -p udp -m
multiport --dports 8760:19960 -j DNAT
--to-destination 203.145.220.104
iptables -A DOCKER -j ACCEPT

Cautions should be taken that any traffic
forwarded to the container will simply bypass the
VM. Thus the service in the VM and those in the
container can not overlap in their port ranges,
otherwise only the service in the container will get
the connection. Port 443, in particular, needs to be
taken care of because the scheduler of perfSONAR
needs it to work. Any application in the VM which
uses port 443 will not get any inbound traffic after
the DNAT rules are in effect.

Since cloud services usually come with their
own firewall, the aforementioned ports and the
requirements for ping and traceroute need to also be
allowed in the cloud firewall service.

Conclusion
By using the double NAT technique to bring

those “public IP only” measurement tools to the
cloud, the network quality between the user and the
cloud, and even between clouds and on premises
facilities can be constantly monitored and any
degradation of the overall quality can be immediately
notified and rectified. By extending the already
powerful perfSONAR from backbone network to the
cloud, an overall picture of the network can be much
easier to understand and maintain.

Reference
[1] Wikipedia, “OSI model,”

https://en.wikipedia.org/wiki/OSI_model , Last modified:
Apr 10 2024.

[2] Venkat Mohan. , Y. R. Janardhan Reddy, K. Kalpana, "Active
and Passive Network Measurements: A Survey,"
International Journal of Computer Science and Information
Technologies, Vol. 2 (4) , 1372-1385, 2011.

[3] Wikipedia, “Network address translation,”
https://en.wikipedia.org/wiki/Network_address_translation ,
Last modified: Apr 8 2024.

[4] Amazon, Amazon Web Services, https://aws.amazon.com/ ,
Last viewed: Apr 12 2004.

[5] Microsoft, Azure Cloud Service, https://azure.microsoft.com/
, Last viewed: Apr 12 2004.

[6] Google, Google Cloud Platform, https://cloud.google.com/ ,
Last viewed: Apr 12 2004.

[7] Internet2, https://internet2.edu/ , Last viewed: Apr 12 2004.
[8] Department of Energy, Energy Sciences Network,

https://www.es.net/ , Last viewed: Apr 12 2004.
[9] GEANT, https://geant.org/ , Last viewed: Apr 12 2004.
[10] Indiana University, https://www.iu.edu/index.html , Last

viewed: Apr 12 2004.
[11] RNP, https://www.rnp.br/en , Last viewed: Apr 12 2004.
[12] University of Michigan, https://umich.edu/ , Last viewed:

Apr 12 2004.
[13] perfSONAR, https://www.perfsonar.net/ , Last viewed: Apr

12 2004
[14] perfSONAR, “Test and Tool Reference,” perfSONAR 5.0.8

Documentation, 2024.
[15] perfSONAR, “perfSONAR Installation Options,”

perfSONAR 5.0.8 Documentation, 2024.
[16] perfSONAR, “Firewalls and Security Software,”

perfSONAR 5.0.8 Documentation, 2024.

https://en.wikipedia.org/wiki/OSI_model
https://en.wikipedia.org/wiki/Network_address_translation
https://aws.amazon.com/
https://azure.microsoft.com/
https://cloud.google.com/
https://internet2.edu/
https://www.es.net/
https://geant.org/
https://www.iu.edu/index.html
https://www.rnp.br/en
https://umich.edu/
https://www.perfsonar.net/

